use defmt::{info, error}; use embassy_stm32::spi::Error; use embassy_stm32::exti::ExtiInput; use embassy_sync::blocking_mutex::raw::ThreadModeRawMutex; use embassy_sync::channel::Channel; use embassy_sync::mutex::Mutex; use static_cell::StaticCell; use heapless::Vec; use num::complex::Complex; use crate::ad5940::*; use crate::ad5940_registers::*; use bioz_icd_rs::{SingleImpedanceOutput, IcdDftNum, ImpedanceInitError, MeasurementPointSet, MultiImpedanceOutput}; use crate::icd_mapping::IntoDftnum; pub static IMPEDANCE_CHANNEL_SINGLE: Channel = Channel::new(); pub static IMPEDANCE_CHANNEL_MULTI: Channel = Channel::new(); pub type ImpedanceSetupType = Mutex; pub static IMPEDANCE_SETUP: StaticCell = StaticCell::new(); #[derive(PartialEq, Copy, Clone)] pub enum RunningMode { None, SingleFrequency2Lead, SingleFrequency4Lead, MultiFrequency(MeasurementPointSet), } pub struct ImpedanceSetup { ad5940: AD5940, dsp_config: Option, pub running_mode: RunningMode, } impl ImpedanceSetup { pub fn new(ad5940: AD5940) -> Self { ImpedanceSetup { ad5940, dsp_config: None, running_mode: RunningMode::None } } pub async fn init(&mut self) -> Result<(), Error> { // AFECON: self.ad5940.afecon( AFECON::DACBUFEN | AFECON::DACREFEN | AFECON::SINC2EN | AFECON::TIAEN | AFECON::INAMPEN | AFECON::EXBUFEN | AFECON::DACEN, true, ) .await; // Set CLK configuration let clk_config = ClkConfig::default() .adcclkdiv(ADCCLKDIV::DIV1) // ADCCLK = 32MHz .sysclkdiv(SYSCLKDIV::DIV2) // SYSCLK = 16MHz .clk32mhzen(CLK32MHZEN::MHz32); self.ad5940.apply_clk_config(&clk_config).await.unwrap(); // Set DSP configuration let mut dsp_config = DspConfig::default(); dsp_config .adc_mux_n(MUXSELN::HsTiaNeg) .adc_mux_p(MUXSELP::HsTiaPos) .ctiacon(CTIACON::C32) .rtiacon(RTIACON::R1k) .sinc3osr(SINC3OSR::R4) .sinc2osr(SINC2OSR::R178) .adcsamplerate(ADCSAMPLERATE::R1_6MHz) .dftin_sel(DFTINSEL::GainOffset) .dftnum(DFTNUM::Num4096) .hanning(true) .set_clks(16_000_000, 32_000_000); // Check clk_config: In this case SYSCLK = 16MHz and ADCCLK = 32MHz self.ad5940.apply_dsp_config(&dsp_config).await.unwrap(); self.dsp_config = Some(dsp_config); // Set SRAM configuration (cmd and data sram) let mut sram_config = SramConfig::default(); sram_config .datafifosrcsel(DATAFIFOSRCSEL::DFT) .datafifoen(DATAFIFOEN::Normal) .data_size(DATA_MEM_SEL::Size2kB) .cmd_mode(CMDMEMMDE::MemoryMode) .cmd_size(CMD_MEM_SEL::Size2kB); self.ad5940.apply_sram_config(sram_config).await.unwrap(); // WGCON: set sinus output let config_wgcon = WGCON::TYPESEL_SIN.bits(); self.ad5940.write_reg(Register::WGCON, config_wgcon).await.unwrap(); Ok(()) } pub async fn init_single_frequency_measurement(&mut self, frequency: u32, dft_number: IcdDftNum) -> Result { // Reset FIFO self.ad5940.clear_and_enable_fifo().await.unwrap(); // Set DFT number self.dsp_config.as_mut().unwrap().dftnum(dft_number.into_dftnum()); self.ad5940.apply_dsp_config(self.dsp_config.as_ref().unwrap()).await.unwrap(); // Configure GPIOs self.ad5940.write_reg(Register::GP0CON, 0b10 << 4 | 0b10 << 2 | 0b10).await.unwrap(); self.ad5940.write_reg(Register::SYNCEXTDEVICE, 0b111).await.unwrap(); // Calculate wait time between measurement start and stop let wait_time; let sinus_periods_per_dft; if let Some(dsp_config) = &self.dsp_config { wait_time = self.ad5940.sequencer_calculate_wait_time(dsp_config).await.unwrap(); sinus_periods_per_dft = wait_time as f32 / dsp_config.fsys.unwrap() as f32 * frequency as f32; info!("Sinus periods per DFT: {}", sinus_periods_per_dft); } else { error!("DSP configuration not set, cannot calculate wait time"); return Err(ImpedanceInitError::DSPNotSet); } // Configure sequencer self.ad5940.sequencer_enable(true).await; self.ad5940.wgfcw(frequency).await; let wg_amplitude = 2047; // 2047 is the maximum amplitude for a 12-bit DAC --> 1.62V peak-to-peak self.ad5940.write_reg(Register::WGAMPLITUDE, wg_amplitude).await.unwrap(); // Rcal let switch_config = SwitchConfig::default() .t9con(T9CON::T9Closed) .tmuxcon(TMUXCON::TR1Closed) .nmuxcon(NMUXCON::NR1Closed) .pmuxcon(PMUXCON::PR0Closed) .dmuxcon(DMUXCON::DR0Closed); self.ad5940.apply_switch_config(switch_config).await.unwrap(); self.ad5940.afecon(AFECON::WAVEGENEN | AFECON::ADCEN, true).await; self.ad5940.sequencer_wait(16*10).await; // 10 us based on SYSCLK = 16MHz self.ad5940.afecon(AFECON::ADCCONVEN | AFECON::DFTEN, true).await; self.ad5940.sequencer_wait(wait_time).await; // Determined above self.ad5940.sequencer_wait(16*20).await; // 20 us based on SYSCLK = 16MHz self.ad5940.afecon(AFECON::WAVEGENEN | AFECON:: ADCEN | AFECON::ADCCONVEN | AFECON::DFTEN, false).await; // Rz let switch_config = SwitchConfig::default() .t9con(T9CON::T9Closed) .tmuxcon(TMUXCON::T2Closed) .nmuxcon(NMUXCON::N2Closed) .pmuxcon(PMUXCON::P11Closed) .dmuxcon(DMUXCON::D5Closed); self.ad5940.apply_switch_config(switch_config).await.unwrap(); self.ad5940.afecon(AFECON::WAVEGENEN | AFECON::ADCEN, true).await; self.ad5940.sequencer_wait(16*10).await; // 10 us based on SYSCLK = 16MHz self.ad5940.afecon(AFECON::ADCCONVEN | AFECON::DFTEN, true).await; self.ad5940.sequencer_wait(wait_time).await; // Determined above self.ad5940.sequencer_wait(16*20).await; // 20 us based on SYSCLK = 16MHz self.ad5940.afecon(AFECON::WAVEGENEN | AFECON:: ADCEN | AFECON::ADCCONVEN | AFECON::DFTEN, false).await; // Toggle leds self.ad5940.write_reg(Register::SYNCEXTDEVICE, 0b010).await.unwrap(); self.ad5940.sequencer_wait(16 * 1_000).await; // 1ms based on SYSCLK = 16MHz self.ad5940.write_reg(Register::SYNCEXTDEVICE, 0b111).await.unwrap(); self.ad5940.sequencer_enable(false).await; // Write sequence to SRAM let start_address = 0; self.ad5940.sequencer_cmd_write(start_address).await; self.ad5940.sequencer_info_configure(0, self.ad5940.seq_len, start_address).await; self.start_measurement().await; Ok(sinus_periods_per_dft) } pub async fn init_multi_frequency_measurement(&mut self, number_of_points: MeasurementPointSet) -> Result, ImpedanceInitError> { // Create vector to store the periods per DFT for each frequency let mut periods_per_dft_vec = heapless::Vec::::new(); // Reset FIFO self.ad5940.clear_and_enable_fifo().await.unwrap(); // Configure GPIOs self.ad5940.write_reg(Register::GP0CON, 0b10 << 4 | 0b10 << 2 | 0b10).await.unwrap(); self.ad5940.write_reg(Register::SYNCEXTDEVICE, 0b111).await.unwrap(); // Configure sequencer self.ad5940.sequencer_enable(true).await; // Set DFT number based on the frequency for &frequency in number_of_points.values() { // Determine wait time let selected_dft_num = match frequency { f if f < 10 => DFTNUM::Num16384, f if f < 100 => DFTNUM::Num16384, f if f < 250 => DFTNUM::Num8192, f if f < 1000 => DFTNUM::Num4096, f if f < 2500 => DFTNUM::Num2048, f if f < 10000 => DFTNUM::Num1024, f if f < 25000 => DFTNUM::Num512, f if f < 100000 => DFTNUM::Num256, _ => DFTNUM::Num128, }; let wait_time: u32; if let Some(dsp_config) = &mut self.dsp_config { dsp_config .dftnum(selected_dft_num); // Update DFTNUM let mut current = self.ad5940.read_reg(Register::DFTCON).await.unwrap(); current = DFTNUM::apply(current, selected_dft_num as u32); self.ad5940.write_reg(Register::DFTCON, current).await.unwrap(); wait_time = self.ad5940.sequencer_calculate_wait_time(&dsp_config).await.unwrap(); let periods_per_dft = wait_time as f32 / dsp_config.fsys.unwrap() as f32 * frequency as f32; periods_per_dft_vec.push(periods_per_dft).unwrap(); info!("{}Hz: Sinus periods per DFT: {}", frequency, periods_per_dft); } else { error!("DSP configuration not set, cannot calculate wait time"); return Err(ImpedanceInitError::DSPNotSet); } // Set frequency self.ad5940.wgfcw(frequency as u32).await; let wg_amplitude = 2047; // 2047 is the maximum amplitude for a 12-bit DAC --> 1.62V peak-to-peak self.ad5940.write_reg(Register::WGAMPLITUDE, wg_amplitude).await.unwrap(); // Rcal let switch_config = SwitchConfig::default() .t9con(T9CON::T9Closed) .tmuxcon(TMUXCON::TR1Closed) .nmuxcon(NMUXCON::NR1Closed) .pmuxcon(PMUXCON::PR0Closed) .dmuxcon(DMUXCON::DR0Closed); self.ad5940.apply_switch_config(switch_config).await.unwrap(); self.ad5940.afecon(AFECON::WAVEGENEN | AFECON::ADCEN, true).await; self.ad5940.sequencer_wait(16*10).await; // 10 us based on SYSCLK = 16MHz self.ad5940.afecon(AFECON::ADCCONVEN | AFECON::DFTEN, true).await; self.ad5940.sequencer_wait(wait_time).await; // Determined above self.ad5940.sequencer_wait(16*20).await; // 20 us based on SYSCLK = 16MHz self.ad5940.afecon(AFECON::WAVEGENEN | AFECON:: ADCEN | AFECON::ADCCONVEN | AFECON::DFTEN, false).await; // Rz let switch_config = SwitchConfig::default() .t9con(T9CON::T9Closed) .tmuxcon(TMUXCON::T2Closed) .nmuxcon(NMUXCON::N2Closed) .pmuxcon(PMUXCON::P11Closed) .dmuxcon(DMUXCON::D5Closed); self.ad5940.apply_switch_config(switch_config).await.unwrap(); self.ad5940.afecon(AFECON::WAVEGENEN | AFECON::ADCEN, true).await; self.ad5940.sequencer_wait(16*10).await; // 10 us based on SYSCLK = 16MHz self.ad5940.afecon(AFECON::ADCCONVEN | AFECON::DFTEN, true).await; self.ad5940.sequencer_wait(wait_time).await; // Determined above self.ad5940.sequencer_wait(16*20).await; // 20 us based on SYSCLK = 16MHz self.ad5940.afecon(AFECON::WAVEGENEN | AFECON:: ADCEN | AFECON::ADCCONVEN | AFECON::DFTEN, false).await; } // Toggle leds self.ad5940.write_reg(Register::SYNCEXTDEVICE, 0b010).await.unwrap(); self.ad5940.sequencer_wait(16 * 1_000).await; // 1ms based on SYSCLK = 16MHz self.ad5940.write_reg(Register::SYNCEXTDEVICE, 0b111).await.unwrap(); self.ad5940.sequencer_enable(false).await; // Write sequence to SRAM let start_address = 0; self.ad5940.sequencer_cmd_write(start_address).await; self.ad5940.sequencer_info_configure(0, self.ad5940.seq_len, start_address).await; self.start_measurement().await; Ok(periods_per_dft_vec) } pub async fn start_measurement(&mut self) { self.ad5940.sequencer_trigger(0).await; } pub async fn get_fifo_count(&mut self) -> Result { self.ad5940.get_fifo_count().await } pub async fn read_fifo(&mut self, data: &mut [u32]) -> Result<(), Error> { self.ad5940.read_fifo(data).await } } // Task to wait for the interrupt from the AD5940 and read the FIFO // Depending on the running mode, it will read either a single frequency or multiple frequencies // Result is sent via channel to the communication task which then sends it via USB to the host #[embassy_executor::task] pub async fn impedance_setup_readout_task(mut pin: ExtiInput<'static>, impedance_setup: &'static ImpedanceSetupType) { loop { // Wait untill sequence is done pin.wait_for_rising_edge().await; // Lock the impedance setup let mut impedance_setup = impedance_setup.lock().await; // Trigger the sequencer again if impedance_setup.running_mode == RunningMode::SingleFrequency2Lead || impedance_setup.running_mode == RunningMode::SingleFrequency4Lead || impedance_setup.running_mode == RunningMode::MultiFrequency(MeasurementPointSet::Eight) || impedance_setup.running_mode == RunningMode::MultiFrequency(MeasurementPointSet::Eighteen) { impedance_setup.start_measurement().await; } // Read the FIFO count let count = impedance_setup.get_fifo_count().await.unwrap() as usize; // info!("FIFOCNTSTA: {}", count); match impedance_setup.running_mode { RunningMode::None => { continue; // Skip processing if not running } RunningMode::SingleFrequency2Lead => { if count >= 4 { let mut data: [u32; 4] = [0; 4]; impedance_setup.read_fifo(data.as_mut_slice()).await.unwrap(); let result = calculate_impedance(data); // Log // info!("Impedance: Magnitude = {} Ω, Phase = {} rad", result.magnitude, result.phase); let data = SingleImpedanceOutput { magnitude: result.magnitude, phase: result.phase, }; IMPEDANCE_CHANNEL_SINGLE.try_send(data).ok(); } } RunningMode::SingleFrequency4Lead => { info!("TODO: SingleFrequency4Lead not implemented yet"); continue; } RunningMode::MultiFrequency(points) => { // Each frequency point produces 4 samples (DFT real/imag for Rcal and Rz) let required_count = points.len() * 4; if count >= required_count { // Use stack-allocated array let mut data: [u32; 72] = [0; 72]; // max needed size (18*4=72) let data_slice = &mut data[..required_count]; impedance_setup.read_fifo(data_slice).await.unwrap(); // Output structure let mut impedance_output = MultiImpedanceOutput { points, magnitudes_8: Vec::new(), phases_8: Vec::new(), magnitudes_18: Vec::new(), phases_18: Vec::new(), }; // Take 4 samples per frequency point for chunk in data_slice.chunks(4) { let result = calculate_impedance(chunk.try_into().unwrap()); match points { MeasurementPointSet::Eight => { impedance_output.magnitudes_8.push(result.magnitude).ok(); impedance_output.phases_8.push(result.phase).ok(); } MeasurementPointSet::Eighteen => { impedance_output.magnitudes_18.push(result.magnitude).ok(); impedance_output.phases_18.push(result.phase).ok(); } } } IMPEDANCE_CHANNEL_MULTI.try_send(impedance_output).ok(); } continue; } } } } #[derive(Debug)] pub struct ImpedanceResult { pub magnitude: f32, pub phase: f32, } // Example Rcal value (Ohms) const RCAL_VAL: f32 = 1000.0; /// Convert raw 18-bit 2's complement value to signed i32 fn sign_extend_18bit(val: u32) -> i32 { ((val << 14) as i32) >> 14 } /// Calculate magnitude and phase of Rz using Rcal reference pub fn calculate_impedance(data: [u32; 4]) -> ImpedanceResult { let dft_rcal = Complex::new( sign_extend_18bit(data[0]) as f32, sign_extend_18bit(data[1]) as f32 ); let dft_rz = Complex::new( sign_extend_18bit(data[2]) as f32, sign_extend_18bit(data[3]) as f32 ); let rcal_mag = dft_rcal.norm(); let rz_mag = dft_rz.norm(); let rcal_phase = dft_rcal.arg(); let rz_phase = dft_rz.arg(); let magnitude = (rcal_mag / rz_mag) * RCAL_VAL; let phase = rcal_phase - rz_phase; ImpedanceResult { magnitude, phase } }