Added external interrupt and test to determine impedance. Not working yet.

This commit is contained in:
2025-08-12 22:44:08 +02:00
parent 04b6083460
commit f1015ee00d
5 changed files with 162 additions and 23 deletions

1
Cargo.lock generated
View File

@@ -409,7 +409,6 @@ dependencies = [
"defmt 0.3.100", "defmt 0.3.100",
"document-features", "document-features",
"embassy-embedded-hal 0.3.1", "embassy-embedded-hal 0.3.1",
"embassy-executor",
"embassy-futures", "embassy-futures",
"embassy-hal-internal 0.2.0", "embassy-hal-internal 0.2.0",
"embassy-net-driver", "embassy-net-driver",

View File

@@ -5,7 +5,7 @@ edition = "2021"
[dependencies] [dependencies]
# Change stm32h563zi to your chip name, if necessary. # Change stm32h563zi to your chip name, if necessary.
embassy-stm32 = { version = "0.2.0", features = ["defmt", "stm32h533re", "memory-x", "time-driver-any", "exti", "unstable-pac", "low-power"] } embassy-stm32 = { version = "0.2.0", features = ["defmt", "stm32h533re", "memory-x", "time-driver-any", "exti", "unstable-pac"] }
embassy-sync = { version = "0.6.0", features = ["defmt"] } embassy-sync = { version = "0.6.0", features = ["defmt"] }
embassy-executor = { version = "0.7.0", features = ["arch-cortex-m", "executor-thread", "defmt"] } embassy-executor = { version = "0.7.0", features = ["arch-cortex-m", "executor-thread", "defmt"] }
embassy-time = { version = "0.4.0", features = ["defmt", "defmt-timestamp-uptime", "tick-hz-32_768"] } embassy-time = { version = "0.4.0", features = ["defmt", "defmt-timestamp-uptime", "tick-hz-32_768"] }

View File

@@ -207,8 +207,8 @@ impl AD5940 {
// info!("DATAFIFORD: 0x{:08X}", test); // info!("DATAFIFORD: 0x{:08X}", test);
// } // }
let test = self.read_reg_raw(0x2200).await.unwrap(); // let test = self.read_reg_raw(0x2200).await.unwrap();
info!("FIFOCNTSTA: {}", (test>>16) & 0b111_1111_1111); // info!("FIFOCNTSTA: {}", (test>>16) & 0b111_1111_1111);
} }
pub async fn afecon(&mut self, ctr: AFECON, state: bool) { pub async fn afecon(&mut self, ctr: AFECON, state: bool) {
@@ -249,6 +249,22 @@ impl AD5940 {
let reg = self.read_reg(Register::SWCON).await.unwrap(); let reg = self.read_reg(Register::SWCON).await.unwrap();
let mut reg = SWCON::from_bits_truncate(reg); let mut reg = SWCON::from_bits_truncate(reg);
// T9CON
if ctr.contains(SWCON::T9CON) {
reg |= SWCON::T9CON;
} else {
reg &= !SWCON::T9CON;
}
// TMUXCON
if (ctr & SWCON::TMUXCON_MSK) == SWCON::TMUXCON_T2 {
reg &= !SWCON::TMUXCON_MSK;
reg |= SWCON::TMUXCON_T2;
} else if (ctr & SWCON::TMUXCON_MSK) == SWCON::TMUXCON_TR1 {
reg &= !SWCON::TMUXCON_MSK;
reg |= SWCON::TMUXCON_TR1;
}
// NMUXCON // NMUXCON
if (ctr & SWCON::NMUXCON_MSK) == SWCON::NMUXCON_N2 { if (ctr & SWCON::NMUXCON_MSK) == SWCON::NMUXCON_N2 {
reg &= !SWCON::NMUXCON_MSK; reg &= !SWCON::NMUXCON_MSK;
@@ -256,7 +272,10 @@ impl AD5940 {
} else if (ctr & SWCON::NMUXCON_MSK) == SWCON::NMUXCON_N5 { } else if (ctr & SWCON::NMUXCON_MSK) == SWCON::NMUXCON_N5 {
reg &= !SWCON::NMUXCON_MSK; reg &= !SWCON::NMUXCON_MSK;
reg |= SWCON::NMUXCON_N5; reg |= SWCON::NMUXCON_N5;
}; } else if (ctr & SWCON::NMUXCON_MSK) == SWCON::NMUXCON_NR1 {
reg &= !SWCON::NMUXCON_MSK;
reg |= SWCON::NMUXCON_NR1;
}
// PMUXCON // PMUXCON
if (ctr & SWCON::PMUXCON_MSK) == SWCON::PMUXCON_P2 { if (ctr & SWCON::PMUXCON_MSK) == SWCON::PMUXCON_P2 {
@@ -265,12 +284,18 @@ impl AD5940 {
} else if (ctr & SWCON::PMUXCON_MSK) == SWCON::PMUXCON_P11 { } else if (ctr & SWCON::PMUXCON_MSK) == SWCON::PMUXCON_P11 {
reg &= !SWCON::PMUXCON_MSK; reg &= !SWCON::PMUXCON_MSK;
reg |= SWCON::PMUXCON_P11; reg |= SWCON::PMUXCON_P11;
} else if (ctr & SWCON::PMUXCON_MSK) == SWCON::PMUXCON_PR0 {
reg &= !SWCON::PMUXCON_MSK;
reg |= SWCON::PMUXCON_PR0;
} }
// DMUXCON // DMUXCON
if ctr.contains(SWCON::DMUXCON_D5) { if (ctr & SWCON::DMUXCON_MSK) == SWCON::DMUXCON_D5 {
reg &= !SWCON::DMUXCON_MSK; reg &= !SWCON::DMUXCON_MSK;
reg |= SWCON::DMUXCON_D5; reg |= SWCON::DMUXCON_D5;
} else if { ctr & SWCON::DMUXCON_MSK } == SWCON::DMUXCON_DR0 {
reg &= !SWCON::DMUXCON_MSK;
reg |= SWCON::DMUXCON_DR0;
} }
self.write_reg(Register::SWCON, reg.bits()).await.unwrap(); self.write_reg(Register::SWCON, reg.bits()).await.unwrap();
@@ -397,7 +422,7 @@ impl AD5940 {
| SWCON::PMUXCON_P11 | SWCON::PMUXCON_P11
| SWCON::DMUXCON_D5).await; | SWCON::DMUXCON_D5).await;
// //
self.write_reg_raw(0x0000_20D0, 0b1000 << 4).await.unwrap(); self.write_reg_raw(0x0000_20D0, 0b1000 << 4).await.unwrap(); // 1024 OSR
// SINC3 = 5 --> 160000 Hz // SINC3 = 5 --> 160000 Hz
// SINC2 = 178 --> 898,8764044944Hz // SINC2 = 178 --> 898,8764044944Hz
// ... (DFTNUM = 2048) // ... (DFTNUM = 2048)
@@ -452,4 +477,7 @@ pub enum Register {
SEQTIMEOUT = 0x0000_2068, // Sequencer Timeout Counter Register SEQTIMEOUT = 0x0000_2068, // Sequencer Timeout Counter Register
SEQCRC = 0x0000_2060, // Sequencer CRC Value Register SEQCRC = 0x0000_2060, // Sequencer CRC Value Register
DATAFIFOTHRES = 0x0000_21E0, // Data FIFO Threshold Register DATAFIFOTHRES = 0x0000_21E0, // Data FIFO Threshold Register
SYNCEXTDEVICE = 0x0000_2054, // Sync External Device Register
GP0CON = 0x0000_0000, // GPIO Port 0 Configuration Register
DATAFIFORD = 0x0000_206C, // Data FIFO Read Register
} }

View File

@@ -28,13 +28,20 @@ bitflags! {
#[derive(Clone, Copy)] #[derive(Clone, Copy)]
#[derive(PartialEq)] #[derive(PartialEq)]
pub struct SWCON: u32 { pub struct SWCON: u32 {
const T9CON = 1 << 17; // T9 switch // RTIA switch
const TMUXCON_MSK = 0b1111 << 12;
const TMUXCON_T2 = 0b0010 << 12; // T2 switch
const TMUXCON_TR1 = 0b1000 << 12; // TR1 switch
const NMUXCON_MSK = 0b1111 << 8; const NMUXCON_MSK = 0b1111 << 8;
const NMUXCON_N2 = 0b0010 << 8; // N2 switch const NMUXCON_N2 = 0b0010 << 8; // N2 switch
const NMUXCON_N5 = 0b0101 << 8; // N5 switch const NMUXCON_N5 = 0b0101 << 8; // N5 switch
const NMUXCON_NR1 = 0b1010 << 8; // NR1 switch
const PMUXCON_MSK = 0b1111 << 4; const PMUXCON_MSK = 0b1111 << 4;
const PMUXCON_PR0 = 0b0001 << 4; // PR0 switch
const PMUXCON_P2 = 0b0010 << 4; // P2 switch const PMUXCON_P2 = 0b0010 << 4; // P2 switch
const PMUXCON_P11 = 0b1011 << 4; // P11 switch const PMUXCON_P11 = 0b1011 << 4; // P11 switch
const DMUXCON_MSK = 0b1111; const DMUXCON_MSK = 0b1111;
const DMUXCON_DR0 = 0b0001; // DR0 switch
const DMUXCON_D5 = 0b0101; // D5 switch const DMUXCON_D5 = 0b0101; // D5 switch
} }
} }

View File

@@ -3,13 +3,14 @@
use defmt::info; use defmt::info;
use embassy_executor::Spawner; use embassy_executor::Spawner;
use embassy_stm32::exti::ExtiInput;
use embassy_time::{Timer, Duration}; use embassy_time::{Timer, Duration};
use embassy_futures::{select::select, select::Either}; use embassy_futures::{select::select, select::Either};
use embassy_stm32::gpio::{Level, Output, Speed}; use embassy_stm32::gpio::{Level, Output, Speed};
use embassy_stm32::{i2c, spi, Config}; use embassy_stm32::{i2c, spi, Config};
use embassy_stm32::time::Hertz; use embassy_stm32::time::Hertz;
use crate::ad5940_registers::{AFECON, AFEGENINTSTA}; use crate::ad5940_registers::{AFECON, SWCON};
use {defmt_rtt as _, panic_probe as _}; use {defmt_rtt as _, panic_probe as _};
@@ -69,6 +70,10 @@ async fn main(spawner: Spawner) {
let cs = Output::new(p.PC9, Level::High, Speed::Low); let cs = Output::new(p.PC9, Level::High, Speed::Low);
let rst = Output::new(p.PB3, Level::High, Speed::Low); let rst = Output::new(p.PB3, Level::High, Speed::Low);
// Set up interrupt at GPIO for AD5940
let ad5940_gpio_0 = ExtiInput::new(p.PC8, p.EXTI8, embassy_stm32::gpio::Pull::Up);
spawner.must_spawn(ad5940_readout_task(ad5940_gpio_0));
let spi = spi::Spi::new_blocking( let spi = spi::Spi::new_blocking(
p.SPI1, p.SPI1,
p.PA5, // SCK p.PA5, // SCK
@@ -103,18 +108,37 @@ async fn main(spawner: Spawner) {
// // electrodes.set(Electrode::E12, AD5940Pin::RE0, State::ENABLED); // // electrodes.set(Electrode::E12, AD5940Pin::RE0, State::ENABLED);
// Turn on the green LED // Turn on the green LED
ad5940.write_reg_raw(0x0000_0004, 1 << 1).await.unwrap(); // ad5940.write_reg_raw(0x0000_0004, 1 << 1).await.unwrap();
ad5940.write_reg_raw(0x0000_001C, 1 << 1).await.unwrap(); // ad5940.write_reg_raw(0x0000_001C, 1 << 1).await.unwrap();
// // Sequencer test ad5940.write_reg(ad5940::Register::GP0CON, 0b10 << 4 | 0b10 << 2 | 0b10).await.unwrap();
ad5940.write_reg(ad5940::Register::SYNCEXTDEVICE, 0b111).await.unwrap();
// Sequencer test
ad5940.sequencer_enable(true).await; ad5940.sequencer_enable(true).await;
ad5940.afecon(AFECON::WAVEGENEN, true).await; ad5940.wgfcw(100).await;
ad5940.wgfcw(1000).await;
ad5940.sequencer_wait(300_000).await; // Rcal
ad5940.wgfcw(2000).await; ad5940.swcon(SWCON::DMUXCON_DR0 | SWCON::PMUXCON_PR0 | SWCON::NMUXCON_NR1 | SWCON::TMUXCON_TR1 | SWCON::T9CON).await; // RCAL0 -->
ad5940.sequencer_wait(160_000).await; ad5940.afecon(AFECON::WAVEGENEN | AFECON::ADCEN, true).await;
// ad5940.sequencer_trigger_interrupt(AFEGENINTSTA::CUSTOMINT0).await; ad5940.sequencer_wait(16*10).await; // 10 us
ad5940.afecon(AFECON::WAVEGENEN, false).await; ad5940.afecon(AFECON::ADCCONVEN | AFECON::DFTEN, true).await;
ad5940.sequencer_wait(16 * 1_500_000).await; // 1.5 second
ad5940.afecon(AFECON::WAVEGENEN | AFECON:: ADCEN | AFECON::ADCCONVEN | AFECON::DFTEN, false).await;
// Rz
ad5940.swcon(SWCON::DMUXCON_D5 | SWCON::PMUXCON_P11 | SWCON::NMUXCON_N2 | SWCON::TMUXCON_MSK | SWCON::TMUXCON_T2).await;
ad5940.afecon(AFECON::WAVEGENEN | AFECON::ADCEN, true).await;
ad5940.sequencer_wait(16*10).await; // 10 us
ad5940.afecon(AFECON::ADCCONVEN | AFECON::DFTEN, true).await;
ad5940.sequencer_wait(16 * 1_500_000).await; // 1.5 second
ad5940.afecon(AFECON::WAVEGENEN | AFECON:: ADCEN | AFECON::ADCCONVEN | AFECON::DFTEN, false).await;
// Toggle leds
ad5940.write_reg(ad5940::Register::SYNCEXTDEVICE, 0b010).await.unwrap();
ad5940.sequencer_wait(16 * 100_000).await; // 0.1 second
ad5940.write_reg(ad5940::Register::SYNCEXTDEVICE, 0b111).await.unwrap();
ad5940.sequencer_enable(false).await; ad5940.sequencer_enable(false).await;
// // Configure the sequencer cmd data sram // // Configure the sequencer cmd data sram
@@ -148,13 +172,26 @@ async fn main(spawner: Spawner) {
ad5940.sequencer_trigger(0).await; ad5940.sequencer_trigger(0).await;
// info!("Mainloop still running!"); // info!("Mainloop still running!");
Timer::after_millis(250).await; Timer::after_millis(3500).await;
// let test = ad5940.read_reg_raw(0x2200).await.unwrap();
// info!("FIFOCNTSTA: {}", (test>>16) & 0b111_1111_1111);
let mut data: [u32; 4] = [0; 4];
data[0] = ad5940.read_reg(ad5940::Register::DATAFIFORD).await.unwrap();
data[1] = ad5940.read_reg(ad5940::Register::DATAFIFORD).await.unwrap();
data[2] = ad5940.read_reg(ad5940::Register::DATAFIFORD).await.unwrap();
data[3] = ad5940.read_reg(ad5940::Register::DATAFIFORD).await.unwrap();
let result = calculate_impedance(data);
// Youll need to implement your own logging or send this over serial in embedded
info!("Impedance: Magnitude = {} Ω, Phase = {} rad", result.magnitude, result.phase);
// let test = ad5940.read_reg_raw(0x2200).await.unwrap();
// info!("FIFOCNTSTA: {}", (test>>16) & 0b111_1111_1111);
} }
} }
@@ -180,3 +217,71 @@ async fn green_led(mut led: Output<'static>) {
led.toggle(); led.toggle();
} }
} }
#[embassy_executor::task]
async fn ad5940_readout_task(mut pin: ExtiInput<'static>) {
loop {
pin.wait_for_falling_edge().await;
info!("AD5940 interrupt triggered!");
}
}
extern crate libm;
#[derive(Debug, Clone, Copy)]
pub struct Complex {
real: i32,
imag: i32,
}
#[derive(Debug)]
pub struct ImpedanceResult {
pub magnitude: f32,
pub phase: f32,
}
// Example Rcal value (Ohms)
const RCAL_VAL: f32 = 1000.0;
/// Convert raw 18-bit 2's complement value to signed i32
fn sign_extend_18bit(val: u32) -> i32 {
let masked = val & 0x3FFFF;
if masked & (1 << 17) != 0 {
(masked | 0xFFFC0000) as i32
} else {
masked as i32
}
}
/// Calculate magnitude and phase of Rz using Rcal reference
pub fn calculate_impedance(data: [u32; 4]) -> ImpedanceResult {
let mut signed_data = [0i32; 4];
for (i, &val) in data.iter().enumerate() {
signed_data[i] = sign_extend_18bit(val);
}
let dft_rcal = Complex {
real: signed_data[0],
imag: signed_data[1],
};
let dft_rz = Complex {
real: signed_data[2],
imag: signed_data[3],
};
let rcal_mag = libm::sqrtf((dft_rcal.real as f32) * (dft_rcal.real as f32)
+ (dft_rcal.imag as f32) * (dft_rcal.imag as f32));
let rz_mag = libm::sqrtf((dft_rz.real as f32) * (dft_rz.real as f32)
+ (dft_rz.imag as f32) * (dft_rz.imag as f32));
let rcal_phase = libm::atan2f(-(dft_rcal.imag as f32), dft_rcal.real as f32);
let rz_phase = libm::atan2f(-(dft_rz.imag as f32), dft_rz.real as f32);
let magnitude = (rcal_mag / rz_mag) * RCAL_VAL;
let phase = rcal_phase - rz_phase;
ImpedanceResult { magnitude, phase }
}